Respuesta :
Answer:
P=10.04Mpa
Explanation:
the minimum air pressure must be equal to the water pressure at that depth, to calculate the pressure we can use the following equation
P=hgρ
where
h=depth=1000m
g=gravity=9.81m/s^2
ρ=density=1.024g/cm^3=1024kg/m^3
P=pressure
P=(1000)(9.81)(1024)=10045440Pa=10.04Mpa
Answer:
1.004 × 10⁴ kPa
Explanation:
Given data
- Depth (h): 1000 m
- Density of seawater (ρ): 1.024 × 10³ kg/m³
[tex]\frac{1.024g}{cm^{3}}.\frac{1kg}{10^{3}g} .\frac{10^{6}cm^{3}}{1m^{3} } =1.024 \times 10^{3} kg/m^{3}[/tex]
- Gravity (g): 9.806 m/s²
In order to prevent water from entering, the air pressure must be equal to the pressure exerted by the seawater at the bottom. We can find that pressure (P) using the following expression.
P = ρ × g × h
P = (1.024 × 10³ kg/m³) × (9.806 m/s²) × 1000 m
P = 1.004 × 10⁷ Pa
P = 1.004 × 10⁷ Pa × (1 kPa/ 10³ Pa)
P = 1.004 × 10⁴ kPa