Sviatoslav solved the quadratic equation x^2-x-1=0 by completing the square. In the process, he came up with the equivalent equation (x+a)^2 = b, where a and b are constants. What is b?

Respuesta :

Answer:

[tex]x=\frac{1+\sqrt5}{2}[/tex] and  [tex]x=\frac{1-\sqrt5}{2}[/tex]

and b=[tex]\frac{5}{4}[/tex]

Step-by-step explanation:

We are given that a quadratic equation

[tex]x^2-x-1=0[/tex]

We have to solve the equation by completing square and find the value of b.

[tex](x)^2-2\times x\times \frac{1}{2}+(\frac{1}{2})^2-(\frac{1}{2})^2-1=0[/tex]

[tex](x-\frac{1}{2})^2-\frac{1}{4}-1=0[/tex]

[tex](x-\frac{1}{2})^2-\frac{1-4}{4}=0[/tex]

[tex](x-\frac{1}{2})-\frac{5}{4}=0[/tex]

[tex](x-\frac{1}{2})^2-(\frac{\sqrt5}{2})^2=0[/tex]

[tex](x-\frac{1}{2})^2=(\frac{\sqrt5}{2})^2[/tex]

[tex]x-\frac{1}{2}=\frac{\sqrt5}{2}[/tex] and [tex]x-\frac{1}{2}=-\frac{\sqrt5}{2}[/tex]

[tex]x=\frac{\sqrt5}{2}+\frac{1}{2}=\frac{1+\sqrt5}{2}[/tex]

And [tex]x=\frac{1}{2}-\frac{\sqrt5}{2}=\frac{1-\sqrt5}{2}[/tex]

Therefore,[tex]x=\frac{1+\sqrt5}{2}[/tex] and  [tex]x=\frac{1-\sqrt5}{2}[/tex]

and b=[tex]\frac{5}{4}[/tex]