I just need the answers you don’t have to explain for number 4

Answer: (a) 3 (b) -4 (c) 8 (d) 8i (e) 11
Step-by-step explanation:
For a cubed root, you need three like terms on the inside to make one on the outside.
[tex]a)\quad \sqrt[3]{27}\quad = \sqrt[3]{3\cdot3\cdot3}\quad =\large\boxed{3}\\\\b)\quad \sqrt[3]{-64}\quad = \sqrt[3]{-4\cdot-4\cdot-4}\quad =\large\boxed{-4}[/tex]
For a square root, you need two like terms on the inside to make one on the outside. Reminder that √-1 = i
[tex]c)\quad \sqrt{64}\quad = \sqrt{8\cdot8}\quad =\large\boxed{8}\\\\d)\quad \sqrt{-64}\quad = \sqrt{-1\cdot8\cdot8}\quad =\large\boxed{8i}\\\\e)\quad \sqrt{121}\quad = \sqrt{11\cdot11}\quad =\large\boxed{11}[/tex]