Find the area of the region described.
The region between the line y=x and the curve y=2x√(25 - x^2) in the first quadrant. The total area of the shaded region is ___ (from 7087 to 100).

Respuesta :

Answer:

The area is [tex]\frac{567}{8}u^2[/tex]

Step-by-step explanation:

The area of a flat region bounded by the graphs of two functions f (x) and g (x), with f (x)> g (x) can be found through the integral:

[tex]\int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

The integration limits are given by the intersection points of the graphs of the functions in the first quadrant. Then, the cut points are:

[tex]g(x) = x\\f(x) = 2x\sqrt{25-x^2}[/tex]

[tex]x=2x\sqrt{25-x^2}\\x^2=4x^2(25-x^2)\\x^2(1-100+4x^2)=0\\x_1=0\\x_2=\frac{3\sqrt{11}}{2}[/tex]

The area of the region is:

[tex]\int\limits^b_a {[f(x) - g(x)]} \, dx = \int\limits^{\frac{3\sqrt{11}}{2}}_0 {x(2\sqrt{25-x^2}-1)} \, dx = \frac{567}{8}u^2[/tex]