Hot air enters a rectangular duct (20cm wide, 25cm high, and 5m long) at 100 kPa and 60 degrees C at an average velocity of 5 m/s. While air flows the duct, it gets cool down (loses energy) so that air leave the duct at 54 degrees C. Determine the rate of heat loss from the air under steady condition

Respuesta :

Answer:

1.57 kW

Explanation:

The rate of heat loss is given by:

q = Gm * Cp * (tfin - ti)

Where

q: rate of heat loss

Gm: mass flow

Cp: specific heat at constant pressure

The Cp of air is:

Cp = 1 kJ/(kg*K)

The mass flow is the volumetric flow divided by the specific volume

Gm = Gv / v

The volumetric flow is the air speed multiplied by the cruss section of the duct.

Gv = s * h * w (I name speed s because I have already used v)

The specific volume is obtained from the gas state equation:

p * v = R * T

60 C is 333 K

The gas constant for air is 287 J/(kg*K)

Then:

v = (R * T)/p

v = (287 * 333) / 100000 = 0.955 m^3/kg

Then, the mass flow is

Gm = s * h * w / v

And rthe heat loss is of:

q = s * h * w * Cp * (tfin - ti) / v

q = 5 * 0.25 * 0.2 * 1 * (54 - 60) / 0.955 = -1.57 kW (negative because it is a loss)