Answer:
[tex]a=5.66*10^{23} \frac{m}{s^2}[/tex]
Explanation:
In this case we will use the Bohr Atomic model.
We have that: [tex]F=m*a[/tex]
We can calculate the centripetal force using the coulomb formula that states:
[tex]F=k*\frac{q*q'}{r^2}[/tex]
Where K=[tex]9*10^9 \frac{Nm^2}{C}[/tex]
and r is the distance.
Now we can say:
[tex]m*a=k*\frac{q*q'}{r^2}[/tex]
The mass of the electron is = [tex]9.1*10^{-31}[/tex] Kg
The charge magnitud of an electron and proton are= [tex]1.6*10^{-19}C[/tex]
Substituting what we have:
[tex][tex]a=\frac{9*10^{9}*(1.6*10^{-19} )*(2(1.6*10^{-19} ))}{9.1*10^{-31}*(2.99*10^{-11})^2 }[/tex][/tex]
so:
[tex]a=5.66*10^{23} \frac{m}{s^2}[/tex]