contestada

Suppose a single electron orbits about a nucleus containing two protons (+2e), as would be the case for a helium atom from which one of the naturally occurring electrons is removed. The radius of the orbit is 2.99 × 10-11 m. Determine the magnitude of the electron's centripetal acceleration.

Respuesta :

Answer:

[tex]a=5.66*10^{23} \frac{m}{s^2}[/tex]

Explanation:

In this case we will use the Bohr Atomic model.

We have that: [tex]F=m*a[/tex]

We can calculate the centripetal force using the coulomb formula that states:

[tex]F=k*\frac{q*q'}{r^2}[/tex]

Where K=[tex]9*10^9 \frac{Nm^2}{C}[/tex]

and r is the distance.

Now we can say:

[tex]m*a=k*\frac{q*q'}{r^2}[/tex]

The mass of the electron is = [tex]9.1*10^{-31}[/tex] Kg

The charge magnitud of an electron and proton are= [tex]1.6*10^{-19}C[/tex]

Substituting what we have:

[tex][tex]a=\frac{9*10^{9}*(1.6*10^{-19} )*(2(1.6*10^{-19} ))}{9.1*10^{-31}*(2.99*10^{-11})^2 }[/tex][/tex]

so:

[tex]a=5.66*10^{23} \frac{m}{s^2}[/tex]