A weak acid. What is the pH of a 0.1 M solution of acetic acid (pKa = 4.75)?
(Hint: Let x be the concentration of H+ ions released from acetic acid when it dissociates. The solutions to a quadratic equation of the form ax^2 + bx + c = 0 are x = (-b +- squareroot (b^2- 4ac)/2a.

Respuesta :

Answer:

pH of acetic acid solution is 2.88

Explanation:

[tex]pK_{a}=4.75[/tex]

or, [tex]-log(K_{a})=4.75[/tex]

or, [tex]K_{a}=10^{-4.75}=1.78\times 10^{-5}[/tex]

We have to construct an ICE table to determine concentration of [tex]H^{+}[/tex] and corresponding pH. Initial concentration of acetic acid is 0.1 M.

[tex]CH_{3}COOH\rightleftharpoons CH_{3}COO^{-}+H^{+}[/tex]

I(M):  0.1                            0                    0

C(M): -x                              +x                 +x

E(M): 0.1-x                         x                    x

So, [tex]\frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}=K_{a}[/tex]

or, [tex]\frac{x^{2}}{0.1-x}=1.78\times 10^{-5}[/tex]

or, [tex]x^{2}+(1.78\times 10^{-5}\times x)-(1.78\times 10^{-6})=0[/tex]

So, [tex]x=\frac{-(1.78\times 10^{-5})+\sqrt{(1.78\times 10^{-5})^{2}+(4\times 1\times 1.78\times 10^{-6})}}{2\times 1}[/tex](M)

so, [tex]x=1.33\times 10^{-3}M[/tex]

Hence [tex]pH=-log[H^{+}]=-log(1.33\times 10^{-3})=2.88[/tex]