Respuesta :
Answer:
The T-score is 2.49216
Step-by-step explanation:
A 98% confidence interval should be estimated for the end times of cyclists. Since the sample is small, a T-student distribution should be used, in such an estimate. The confidence interval is given by the expression:
[tex][\bar x -T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}, \bar x +T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}][/tex]
[tex]n = 25\\\alpha = 0.02\\T_{(n-1;\frac{\alpha}{2})}= T_{(24;0.01)} = 2.49216[/tex]
Then the T-score is 2.49216