The finishing time for cyclists in a race are normally distributed with an unknown population mean and standard deviation. If a random sample of 25 cyclists is taken to estimate the mean finishing time, what t-score should be used to find a 98% confidence interval estimate for the population mean?

Respuesta :

Answer:

The T-score is 2.49216

Step-by-step explanation:

A 98% confidence interval should be estimated for the end times of cyclists. Since the sample is small, a T-student distribution should be used, in such an estimate. The confidence interval is given by the expression:

[tex][\bar x -T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}, \bar x +T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}][/tex]

[tex]n = 25\\\alpha = 0.02\\T_{(n-1;\frac{\alpha}{2})}= T_{(24;0.01)} = 2.49216[/tex]

Then the T-score is 2.49216

Answer:

2.485

Step-by-step explanation: