Answer:
44.1 m
Explanation:
Given:
Assumptions:
We know that the distance traveled by the sound in a particular medium is equal to the product of the speed of sound in that medium and the time taken.
For traveling sound through the rod, we have
[tex]l=V_r t\\\Rightarrow t = \dfrac{l}{V_r}[/tex]..........eqn(1)
For traveling sound through the air to the women ear for traveling the same distance, we have
[tex]l=V_aT\\\Rightarrow l=V_a(t+0.12)\\\Rightarrow l=V_a(\dfrac{l}{V_r}+0.12)\,\,\,\,\,\,(\textrm{From eqn (1)})\\\Rightarrow l=V_a(\dfrac{l}{15V_a}+0.12)\\\Rightarrow l=\dfrac{l}{15}+0.12V_a\\\Rightarrow l-\dfrac{l}{15}=0.12V_a\\\Rightarrow \dfrac{14l}{15}=0.12V_a\\\Rightarrow l = \dfrac{15}{14}\times 0.12V_a\\\Rightarrow l = \dfrac{15}{14}\times 0.12\times 343\\\Rightarrow l = \dfrac{15}{14}\times 0.12\times 343\\\Rightarrow l = 44.1\ m[/tex]
Hence, the length of the rod is 44.1 m.