The true and false statements concerning the limit of the function [tex]f(x) = 4x^8 - 3x^7 + 2x - 11[/tex] is:
[tex]\lim_{x \to \infty} f(x) = \infty (True)\\\lim_{x \to \infty} f(x) = -\infty (False)[/tex]
The given function is:
[tex]f(x) = 4x^8 - 3x^7 + 2x - 11[/tex]
To find [tex]\lim_{x \to -\infty} f(x)[/tex] , substitute [tex]x = -\infty[/tex] into f(x)
[tex]\lim_{x \to -\infty} f(x) = 4(-\infty)^8- 3(-\infty)^7 + 2(-\infty) - 11\\\\\lim_{x \to \infty} f(x) = 4(\infty) - 3(-\infty) -2(\infty) - 11\\\\\lim_{x \to \infty} f(x) = \infty +\infty - \infty - 11\\\\\lim_{x \to \infty} f(x) = \infty - 11\\\\\lim_{x \to \infty} f(x) = \infty[/tex]
To find [tex]\lim_{x \to \infty} f(x)[/tex] , substitute [tex]x = \infty[/tex] into f(x)
[tex]\lim_{x \to \infty} f(x) = 4(\infty)^8- 3(\infty)^7 + 2(\infty) - 11\\\\\lim_{x \to \infty} f(x) = 4(\infty) - 3(\infty) + 2(\infty) - 11\\\\\lim_{x \to \infty} f(x) = \infty - \infty + \infty - 11\\\\\lim_{x \to \infty} f(x) = \infty = \infty - 11\\\\\lim_{x \to \infty} f(x) = \infty[/tex]
Therefore:
For [tex]f(x) = 4x^8 - 3x^7 + 2x - 11[/tex]
[tex]\lim_{x \to \infty} f(x) = \infty (True)\\\lim_{x \to \infty} f(x) = -\infty (False)[/tex]
Learn more here: https://brainly.com/question/20512128