Answer:
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow +\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow -\infty[/tex]
Step-by-step explanation:
Since, the end behaviour of a polynomial f(x) depends upon the leading coefficient ( coefficient of higher degree variable ) and degree of the polynomial,
If the degree = even and leading coefficient = positive,
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow +\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow +\infty[/tex]
If the degree = even and leading coefficient = negative,
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow -\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow -\infty[/tex]
If the degree = odd and leading coefficient = positive,
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow -\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow +\infty[/tex]
If the degree = odd and leading coefficient = negative,
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow +\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow -\infty[/tex]
Here, the given polynomial,
[tex]f(x) = -2x^5 + 5x^3 - 2x + 13[/tex]
Since, 5 = odd and -2 = negative,
Hence, the end behaviour of the polynomial,
[tex]\text{As }x\rightarrow -\infty, f(x)\rightarrow +\infty[/tex]
[tex]\text{As }x\rightarrow +\infty, f(x)\rightarrow -\infty[/tex]