Given that x = -2 - 3i and y = 4 + 2i , Match The Expressions.

Answer:
[tex]3y-2x=16+12i[/tex]
[tex]-3x \cdot y=6+48i[/tex]
[tex]x \cdot 2y=-4-32i[/tex]
[tex]x-y=-6-5i[/tex]
Step-by-step explanation:
Given:
[tex]x=-2-3i[/tex]
[tex]y=4+2i[/tex]
---
1st problem:
[tex]3y-2x[/tex]
[tex]3(4+2i)-2(-2-3i)[/tex]
Distribute:
[tex]12+6i+4+6i[/tex]
Combine like terms:
[tex]16+12i[/tex]
---
2nd problem:
[tex]-3x \cdot y[/tex]
[tex]-3(-2-3i) cdot (4+2i)[/tex]
[tex]-3(-2-3i)(4+2i)[/tex]
Distribute -3 to first factor:
[tex](6+9i)(4+2i)[/tex]
Use foil to simplify:
[tex]24+12i+36i+18i^2[/tex]
Replace [tex]i^2[/tex] with -1:
[tex]24+48i-18[/tex]
Combine like terms:
[tex]6+48i[/tex]
---
3rd problem:
[tex]x \cdot 2y[/tex]
[tex](-2-3i) \cdot 2(4+2i)[/tex]
Distribute 2 to the second factor:
[tex](-2-3i) \cdot (8+4i)[/tex]
[tex](-2-3i)(8+4i)[/tex]
Use foil to simplify:
[tex]-16-8i-24i-12i^2[/tex]
Replace [tex]i^2[/tex] with -1:
[tex]-16-32i+12[/tex]
Combine like terms:
[tex]-4-32i[/tex]
----
4th problem:
[tex](-2-3i)-(4+2i)[/tex]
Distribute:
[tex]-2-3i-4-2i[/tex]
Combine like terms:
[tex]-2-4-3i-2i[/tex]
Simplify:
[tex]-6-5i[/tex]
Answer:
3y - 2x --> 16 + 12i
-3x · y --> 6 + 48i
x · 2y --> -4 - 32i
x - y --> -6 - 5i
Step-by-step explanation:
Work each one out.
3y - 2x
3(4 + 2i) - 2(-2 - 3i)
12 + 6i + 4 + 6i
16 + 12i
-3x · y
-3(-2 - 3i) · (4 + 2i)
(6 +9i) · (4 + 2i)
24 + 12i + 26i - 18
6 +48i
x · 2y
(-2 - 3i) · 2(4 + 2i)
(-2 - 3i) · (8 + 4i)
-16 - 8i - 24i +12
-4 - 32i
x - y
(-2 - 3i) - (4 + 2i)
-6 - 5i