Respuesta :
Answer:
x = [tex]\frac{1}{3}[/tex]
Step-by-step explanation:
Using the rule of exponents
[tex]a^m^{n}[/tex] = [tex]a^{mn}[/tex]
Note that 8 = 2³ and 2 = [tex]2^{1}[/tex], then
[tex](2^3)^{x}[/tex] = [tex]2^{1}[/tex], that is
[tex]2^{3x}[/tex] = [tex]2^{1}[/tex]
Since the bases on both sides are equal, equate the exponents
3x = 1 ( divide both sides by 3 )
x = [tex]\frac{1}{3}[/tex]
The value of [tex]x[/tex] is [tex]\dfrac{1}{3}[/tex].
Properties of exponents:
- [tex](a^m)^n=a^{mn}[/tex]
- If [tex]x^a=x^b[/tex], , then [tex]a=b[/tex].
The given equation is:
[tex]8^x=2[/tex]
It can be rewritten as:
[tex](2^3)^x=2^1[/tex]
[tex]2^{3x}=2^1[/tex] [tex][\because (a^m)^n=a^{mn}][/tex]
On comparing the exponents, we get
[tex]3x=1[/tex]
Divide both sides by 3.
[tex]\dfrac{3x}{3}=\dfrac{1}{3}[/tex]
[tex]x=\dfrac{1}{3}[/tex]
Therefore, the required value is .
Learn more:
https://brainly.com/question/24528382