Answer:
[tex]f(x)\cdot g(x)=-6x^3+19x^2-17x-2[/tex]
Step-by-step explanation:
Given : Functions [tex]f(x)=(-3x+2)[/tex] and [tex]g(x)=2x^2-5x-1[/tex]
To find : Evaluate [tex]f(x)\cdot g(x)[/tex] by modeling or by using the distributive property ?
Solution :
[tex]f(x)=(-3x+2)[/tex] and [tex]g(x)=2x^2-5x-1[/tex]
Substitute in the expression,
[tex]f(x)\cdot g(x)=(-3x+2)(2x^2-5x-1)[/tex]
Applying distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]f(x)\cdot g(x)=(-3x)(2x^2-5x-1)+2(2x^2-5x-1)[/tex]
[tex]f(x)\cdot g(x)=-6x^3+15x^2+3x+4x^2-20x-2[/tex]
[tex]f(x)\cdot g(x)=-6x^3+19x^2-17x-2[/tex]
Therefore, [tex]f(x)\cdot g(x)=-6x^3+19x^2-17x-2[/tex]