Respuesta :
Answer:
- 16√3
- -45+15i
- √255
- 6√2 +3√10
Step-by-step explanation:
1)
[tex]-4i\sqrt{-48}=-4i\sqrt{(-1)(4^2)(3)}=(-4i)(4i)\sqrt{3}=16\sqrt{3}[/tex]
__
2)
[tex](-5-5i)(3-6i)=-5(3-6i)-5i(3-6i)=-15+30i-15i+30i^2=-15-30+15i\\\\=-45+15i[/tex]
__
3)
[tex]\sqrt{3}\sqrt{5}\sqrt{17}=\sqrt{3\cdot 5\cdot 17}=\sqrt{255}[/tex]
__
4)
[tex]\sqrt{3}(\sqrt{24}+\sqrt{30})=\sqrt{3\cdot 24}+\sqrt{3\cdot 30}=\sqrt{6^2\cdot 2}+\sqrt{3^2\cdot 10}\\\\=6\sqrt{2}+3\sqrt{10}[/tex]
_____
The applicable identities are ...
[tex]\sqrt{a^2b}=a\sqrt{b}\\\\i^2=-1[/tex]
Answer:
4) [tex]6\sqrt{2} + 3\sqrt{10}[/tex]
3) [tex]\sqrt{255}[/tex]
2) [tex]15i - 45[/tex]
1) [tex]16\sqrt{3}[/tex]
Step-by-step explanation:
4) [tex]\sqrt{3}[\sqrt{24} + \sqrt{30}] = \sqrt{72} + \sqrt{90} = \sqrt{[2][36]} + \sqrt{[10][9]} = 6\sqrt{2} + 3\sqrt{10}[/tex]
3) [tex]\sqrt{255} = [\sqrt{3}][\sqrt{5}][\sqrt{17}][/tex]
2) [tex][-5 - 5i][3 - 6i] = -15 + 15i + 30{i}^{2} = -15 + 15i - 30 = 15i - 45[/tex]
1) [tex]-4i\sqrt{-48} = -4i\sqrt{[3][16][i]} = -4i[4i]\sqrt{3} = -16{i}^{2} \sqrt{3} = 16\sqrt{3}[/tex]
Extended Information on the Complex Number System
[tex]\sqrt{-1} = i[/tex]
[tex]-1 = {i}^{2}[/tex]
[tex]-i = {i}^{3}[/tex]
[tex]1 = {i}^{4}[/tex]
I am joyous to assist you anytime.