Weak acids and bases are those that do not completely dissociate in water. The dissociation of the acid or base is an equilibrium process and has a corresponding equilibrium constant. Ka is the equilibrium constant for the dissociation of a weak acid and Kb is the equilibrium constant for the dissociation of a weak base. What is the pH of a solution that has 0.125 M CH3COOH and 0.125 M H3BO3? Ka of CH3COOH = 1.8 × 10−5 and Ka of H3BO3 = 5.4 × 10−10 ANSWER Unselected 4.74 Unselected 5.64 Unselected 2.82 Unselected 2.52 Unselected

Respuesta :

Answer:

pH=2.82

Explanation:

pH is a scale used to indicate if a water-based solution is acidic or basic, and is defined by the following equation:

[tex]pH=- log (H^{+})[/tex]  Equation (1)

In aqueous solutions there are no ions [tex]H^{+}[/tex], because the proton is transferred to [tex]H_{2}O[/tex] to form hydronium ions, [tex]H_{3}O^{+}[/tex]. Thus, we can determine the pH of the solution, finding the molar concentration of [tex]H_{3}O^{+}[/tex] ions:

[tex][pH=- log (H_{3}O^{+})[/tex] Equation (2)

The solution prepared contains two weak acids, each one undergoes an equilibrium process with the corresponding equilibrium constant Ka, as it is represented in the following reaction for a weak acid HA:

HA  +  [tex]H_{2}O[/tex]  ⇔  [tex]H_{3}O^{+}[/tex]  +  [tex]A^{-}[/tex]

The equilibrium constant is defined by the equilibrium concentration of products over reactants:

[tex]k= \frac{[H_3O^{+}][A^{-}]}{[HA][H_2O]}[/tex]  Equation (3)

However, the molar concentration of water is essentially constant for reactions in aqueous solutions, then the acid dissociation constant is defined as follow:

[tex]k_a=K[H_2O]= \frac{[H_3O^{+}][A^{-}]}{[HA]}[/tex]  Equation (4)

Information for [tex]CH_3COOH[/tex]:

Reaction:   [tex]CH_3COOH[/tex] + [tex]H_{2}O[/tex]⇔ [tex]H_{3}O^{+}[/tex]  +  [tex]CH_3COO^{-}[/tex]  

Initial moles per Liter:         0.125 M       +     A        ⇔            0        +       0

Reacting moles per liter:        -x          +      -x            ⇔             x       +     x

Equilibrium mole per liter:  0.125 M-x +      A-x         ⇔            x      +      x

[tex]k_a= 1.8*10^{-5}[/tex]

Information for [tex]H_3BO_3[/tex]:

Reaction:    [tex]H_3BO_3[/tex] + [tex]H_{2}O[/tex] ⇔ [tex]H_{3}O^{+}[/tex] + [tex]H_2BO_3^{-}[/tex]

Initial moles per Liter:        0.125 M     +        A      ⇔               0        +       0

Reacting moles per liter:        -y            +       -y          ⇔               y       +     y

Equilibrium mole per liter:   0.125 M-y +       A-y        ⇔              y      +      y

[tex]k_a= 5.4*10^{-10}[/tex]

Replacing the equilibrium information of each acid in equation 4, we get:

For [tex]CH_3COOH[/tex]:

[tex]1.8*10^{-5} =\frac{[x][x]}{[0.125-x]}[/tex] Equation (5)

For [tex]H_3BO_3[/tex]:

[tex]5.4*10^{-10} =\frac{[y][y]}{[0.125-y]}[/tex] Equation (6)

Solving equation 5 and 6:

For [tex]CH_3COOH[/tex]:

[tex]x = [H_{3}O^{+}] = 1.49*10^{-3}[/tex]

For [tex]H_3BO_3[/tex]:

[tex]y = [H_{3}O^{+}] = 1.64*10^{-6}[/tex]

Due to both acids are in the same solution, the total concentration of [tex][H_{3}O^{+}][/tex] is (x+y) [tex]1.5064*10^{-3}[/tex]. Replacing this concentration in equation 2, we get:

[tex]pH= -log (1.5064*10^{-3})=2.82[/tex]