Respuesta :

Answer:

[tex]x=\frac{-1(+)\sqrt{10}} {3}[/tex]

[tex]x=\frac{-1(-)\sqrt{10}} {3}[/tex]

[tex]x=1[/tex]

Step-by-step explanation:

we have

[tex](3x^{2}+2x-3)(x-1)[/tex]

Solve the quadratic equation

[tex](3x^{2}+2x-3)[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]3x^{2}+2x-3=0[/tex]  

so

[tex]a=3\\b=2\\c=-3[/tex]

substitute in the formula

[tex]x=\frac{-2(+/-)\sqrt{2^{2}-4(3)(-3)}} {2(3)}[/tex]

[tex]x=\frac{-2(+/-)\sqrt{40}} {6}[/tex]

[tex]x=\frac{-2(+/-)2\sqrt{10}} {6}[/tex]

[tex]x=\frac{-2(+)2\sqrt{10}} {6}=\frac{-1(+)\sqrt{10}} {3}[/tex]

[tex]x=\frac{-2(-)2\sqrt{10}} {6}=\frac{-1(-)\sqrt{10}} {3}[/tex]

therefore

The solutions of the equation

[tex](3x^{2}+2x-3)(x-1)[/tex]

are

[tex]x=\frac{-1(+)\sqrt{10}} {3}[/tex]

[tex]x=\frac{-1(-)\sqrt{10}} {3}[/tex]

[tex]x=1[/tex]