Let Upper A equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 4 2nd Row 1st Column 1 2nd Column 3 EndMatrix right bracketA=−2 41 3​, and Upper B equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 1 2nd Row 1st Column 3 2nd Column 7 EndMatrix right bracketB=−2 13 7.a. FindABAB​,if possible. b. FindBABA​,if possible.c. Are the answers in parts a and b the ​same?d. In​ general, for matrices A and B such that AB and BA both​ exist, does AB always equal​ BA?a. FindABAB​,if possible. Select the correct choice below​ and, if​necessary, fill in the answer boxes to complete your choice.

Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

Given:

[tex]A=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right][/tex]

[tex]B=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right][/tex]

A. Find AB:

[tex]AB=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]\cdot \left[\begin{array}{cc}-2&1\\3&7\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+4\cdot 3&-2\cdot 1+4\cdot 7\\1\cdot (-2)+3\cdot 3&1\cdot 1+3\cdot 7\end{array}\right]=\left[\begin{array}{cc}16&26\\7&22\end{array}\right][/tex]

B. Find BA:

[tex]BA=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]\cdot \left[\begin{array}{cc}-2&4\\1&3\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+1\cdot 1&-2\cdot 4+1\cdot 3\\3\cdot (-2)+7\cdot 1&3\cdot 4+7\cdot 3\end{array}\right]=\left[\begin{array}{cc}5&-5\\1&33\end{array}\right][/tex]

C. Answers are not the same

D. Matrices multiplication is not commutastive in general, so

[tex]AB\neq BA[/tex]

For matrices A and B such that AB and BA both​ exist, AB is not always equal​ to BA

The matrix AB

The matrices are given as:

[tex]A = \left[\begin{array}{cc}-2&4\\1&3\\\end{array}\right][/tex] and [tex]B = \left[\begin{array}{cc}-2&1\\3&7\\\end{array}\right][/tex]

The product of the matrices A and B is calculated as follows:

[tex]AB = \left[\begin{array}{cc}-2*-2 + 4 * 3&-2 * 1+ 4 * 7\\1 * -2 + 3 * 3&1 * 1 + 3 * 7\\\end{array}\right][/tex]

Evaluate the sum

[tex]AB = \left[\begin{array}{cc}16&26\\7&22\\\end{array}\right][/tex]

The matrix BA

The matrices are given as:

[tex]A = \left[\begin{array}{cc}-2&4\\1&3\\\end{array}\right][/tex] and [tex]B = \left[\begin{array}{cc}-2&1\\3&7\\\end{array}\right][/tex]

The product of the matrices B and A is calculated as follows:

[tex]BA = \left[\begin{array}{cc}-2*-2 + 1 * 1&-2 * 4+ 1 * 3\\3 * -2 + 7 * 1&3 * 4 + 7 * 3\\\end{array}\right][/tex]

Evaluate the sum

[tex]BA = \left[\begin{array}{cc}5&-5\\1&33\\\end{array}\right][/tex]

Are the answers the same?

In (a) and (b), we have:

[tex]AB = \left[\begin{array}{cc}16&26\\7&22\\\end{array}\right][/tex] and [tex]BA = \left[\begin{array}{cc}5&-5\\1&33\\\end{array}\right][/tex]

By comparison, both answers are not the same

The conclusion

In​ general, for matrices A and B such that AB and BA both​ exist, AB is not always equal​ to BA

Read more about matrices at:

https://brainly.com/question/1279486