Respuesta :
Answer:
See explanation
Step-by-step explanation:
Given:
[tex]A=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right][/tex]
[tex]B=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right][/tex]
A. Find AB:
[tex]AB=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]\cdot \left[\begin{array}{cc}-2&1\\3&7\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+4\cdot 3&-2\cdot 1+4\cdot 7\\1\cdot (-2)+3\cdot 3&1\cdot 1+3\cdot 7\end{array}\right]=\left[\begin{array}{cc}16&26\\7&22\end{array}\right][/tex]
B. Find BA:
[tex]BA=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]\cdot \left[\begin{array}{cc}-2&4\\1&3\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+1\cdot 1&-2\cdot 4+1\cdot 3\\3\cdot (-2)+7\cdot 1&3\cdot 4+7\cdot 3\end{array}\right]=\left[\begin{array}{cc}5&-5\\1&33\end{array}\right][/tex]
C. Answers are not the same
D. Matrices multiplication is not commutastive in general, so
[tex]AB\neq BA[/tex]
For matrices A and B such that AB and BA both exist, AB is not always equal to BA
The matrix AB
The matrices are given as:
[tex]A = \left[\begin{array}{cc}-2&4\\1&3\\\end{array}\right][/tex] and [tex]B = \left[\begin{array}{cc}-2&1\\3&7\\\end{array}\right][/tex]
The product of the matrices A and B is calculated as follows:
[tex]AB = \left[\begin{array}{cc}-2*-2 + 4 * 3&-2 * 1+ 4 * 7\\1 * -2 + 3 * 3&1 * 1 + 3 * 7\\\end{array}\right][/tex]
Evaluate the sum
[tex]AB = \left[\begin{array}{cc}16&26\\7&22\\\end{array}\right][/tex]
The matrix BA
The matrices are given as:
[tex]A = \left[\begin{array}{cc}-2&4\\1&3\\\end{array}\right][/tex] and [tex]B = \left[\begin{array}{cc}-2&1\\3&7\\\end{array}\right][/tex]
The product of the matrices B and A is calculated as follows:
[tex]BA = \left[\begin{array}{cc}-2*-2 + 1 * 1&-2 * 4+ 1 * 3\\3 * -2 + 7 * 1&3 * 4 + 7 * 3\\\end{array}\right][/tex]
Evaluate the sum
[tex]BA = \left[\begin{array}{cc}5&-5\\1&33\\\end{array}\right][/tex]
Are the answers the same?
In (a) and (b), we have:
[tex]AB = \left[\begin{array}{cc}16&26\\7&22\\\end{array}\right][/tex] and [tex]BA = \left[\begin{array}{cc}5&-5\\1&33\\\end{array}\right][/tex]
By comparison, both answers are not the same
The conclusion
In general, for matrices A and B such that AB and BA both exist, AB is not always equal to BA
Read more about matrices at:
https://brainly.com/question/1279486