Answer:
[tex]=6.2x10^{-3}mol CuSO_4[/tex]
Explanation:
Hello,
By developing the following stoichiometric relationship, the required amount could be found as follows:
- Moles of [tex]CuSO_4[/tex]:
[tex]1.547gCuSO_4.5H_2O *\frac{1molCuSO_4.5H_2O}{249.5gCuSO_4.5H_2O} *\frac{1mol CuSO_4}{1mol CuSO_4.5H_2O} =6.2x10^{-3}mol CuSO_4[/tex]
- Grams of [tex]CuSO_4[/tex]
[tex]1.547gCuSO_4.5H_2O *\frac{1molCuSO_4.5H_2O}{249.5gCuSO_4.5H_2O} *\frac{1mol CuSO_4}{1mol CuSO_4.5H_2O}*\frac{159.5g CuSO_4}{1mol CuSO_4} =0.989 g CuSO_4[/tex]
- Moles of water:
[tex]1.547gCuSO_4.5H_2O *\frac{1molCuSO_4.5H_2O}{249.5gCuSO_4.5H_2O} *\frac{5mol H_2O}{1mol CuSO_4.5H_2O}=0.031mol H_2O[/tex]
Finally, one could see that the mass of the anhydrous compound is less than the pentahydrated compound since it is waterless.
Best regards.