Answer:
Radius = 9.0216 cm
Explanation:
Given that:
The critical mass of neptunium-237 = 60 kg
Also, 1 kg = 1000 g
So mass = 60000 g
Density = 19.5 g/cm³
Volume = ?
So, volume:
[tex]Volume=\frac {{Mass}}{Density}[/tex]
[tex]Volume=\frac {60000\ g}{19.5\ g/cm^3}[/tex]
The volume of the material = 3076.92308 cm³
The expression for the volume of the sphere is:
[tex]V=\frac {4}{3}\times \pi\times {(radius)}^3[/tex]
[tex]3076.92308=\frac{4}{3}\times \frac{22}{7}\times {(radius)}^3[/tex]
[tex]\frac{4}{3}\times \frac{22}{7}\times {(radius)}^3=3076.92308[/tex]
[tex]88\times {(radius)}^3=64615.38468[/tex]
[tex]{(radius)}=\sqrt[3]{\frac{64615.38468}{88}}[/tex]
Radius = 9.0216 cm