Answer:
a) horizontal range s=277671.77 m
b) time the shell is in motion 301.143 s
Explanation:
Is a parabolic movement so the velocity have two components:
[tex]v = 1.74 x 10^{3} ( \frac{m}{s} )[/tex]
[tex]\alpha = 58[/tex]°
[tex]v_{y} =v*Sen (\alpha )\\v_{x} =v*Cos (\alpha )[/tex]
[tex]v_{y} =1740*Sen (58 )\\v_{x} =1740*Cos (58)[/tex]
[tex]v_{y} = 1475.603 \frac{m}{s}\\v_{x} = 922.059 \frac{m}{s}\\[/tex]
[tex]t= \frac{2*v_{y} }{g}[/tex]
[tex]t= \frac{2*1475.603 }{9.8}[/tex]
[tex]t= 301.143 s[/tex]
[tex]v= \frac{s}{t} \\s= v_{x}*t[/tex]
[tex]s= 922.059 \frac{m}{s} * 301.143 s[/tex]
[tex]s = 277671.77 m[/tex]