Respuesta :

Answer:

[tex]x=\frac{-9}{2} +\frac{1}{2} \sqrt{73}[/tex] or [tex]x=\frac{-9}{2} +\frac{-1}{2} \sqrt{73}[/tex]

Step-by-step explanation:

Step 1: Use quadratic formula with a=1, b=9, c=2.

[tex]x=\frac{-b±\sqrt{b^{2} -4ac} }{2a}[/tex]

[tex]x=\frac{-(9)±\sqrt{(9)^{2}-4(1)(2)} }{2(1)}[/tex]

[tex]x=\frac{-9±\sqrt{73} }{2}[/tex]

[tex]x=\frac{-9}{2} +\frac{1}{2} \sqrt{73}[/tex] or [tex]x=\frac{-9}{2} +\frac{-1}{2} \sqrt{73}[/tex]

(Ignore the Â)

Answer:

The exact values of x is 0 or -8.

Step-by-step explanation:

Given : Quadratic equation [tex]x^2+9x+2=0[/tex]

To find : Solve the equation ?

Solution :

Applying quadratic formula of quadratic equation [tex]ax^2+bx+c=0[/tex] is [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Here, a=1, b=9 and c=2

Substitute the value,

[tex]x=\frac{-9\pm\sqrt{9^2-4(1)(2)}}{2(1)}[/tex]

[tex]x=\frac{-9\pm\sqrt{81-8}}{2}[/tex]

[tex]x=\frac{-9\pm\sqrt{73}}{2}[/tex]

[tex]x=\frac{-9+\sqrt{73}}{2},\frac{-9-\sqrt{73}}{2}[/tex]

[tex]x=-0.22,-8.77[/tex]

Therefore, the exact values of x is 0 or -8.