Respuesta :
Answer:
[tex]x=\frac{-9}{2} +\frac{1}{2} \sqrt{73}[/tex] or [tex]x=\frac{-9}{2} +\frac{-1}{2} \sqrt{73}[/tex]
Step-by-step explanation:
Step 1: Use quadratic formula with a=1, b=9, c=2.
[tex]x=\frac{-b±\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]x=\frac{-(9)±\sqrt{(9)^{2}-4(1)(2)} }{2(1)}[/tex]
[tex]x=\frac{-9±\sqrt{73} }{2}[/tex]
[tex]x=\frac{-9}{2} +\frac{1}{2} \sqrt{73}[/tex] or [tex]x=\frac{-9}{2} +\frac{-1}{2} \sqrt{73}[/tex]
(Ignore the Â)
Answer:
The exact values of x is 0 or -8.
Step-by-step explanation:
Given : Quadratic equation [tex]x^2+9x+2=0[/tex]
To find : Solve the equation ?
Solution :
Applying quadratic formula of quadratic equation [tex]ax^2+bx+c=0[/tex] is [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Here, a=1, b=9 and c=2
Substitute the value,
[tex]x=\frac{-9\pm\sqrt{9^2-4(1)(2)}}{2(1)}[/tex]
[tex]x=\frac{-9\pm\sqrt{81-8}}{2}[/tex]
[tex]x=\frac{-9\pm\sqrt{73}}{2}[/tex]
[tex]x=\frac{-9+\sqrt{73}}{2},\frac{-9-\sqrt{73}}{2}[/tex]
[tex]x=-0.22,-8.77[/tex]
Therefore, the exact values of x is 0 or -8.