Respuesta :
f(x) = x^2 and g(x) = x - 3.
To find f(g(x)) replace the x in f(x) by g(x).
f(g(x)) = (x - 3)^2
= x^2 - 6x + 9.
Answer:
2: [tex]g(f(x))=x^2 - 3[/tex]
3: x ≠ 3
Step-by-step explanation:
2 : Here the given functions,
[tex]f(x) = x^2-----(1)[/tex]
[tex]g(x) = x - 3----(2)[/tex]
[tex]\because g(f(x)) = g(x^2)[/tex] ( From equation (1) ),
[tex]=x^2-3[/tex] ( From equation (2) )
3 :
[tex]h(x) = \frac{1}{x-3}[/tex]
Since, it is a rational function,
A rational function is defined for all real numbers except those for which,
Denominator = 0,
If x - 3 = 0
⇒ x = 3
So, Domain of h(x) = R - {3}
i.e., the domain restriction for h(x) is x ≠ 3