Respuesta :
The probability according to the given question will be:
- (a) 0.4286
- (b) 0.90477
- (c) 0.64286
- (d) No, they are dependent.
Given values are:
Number of green cards,
- 10
Number of yellow cards,
- 5
Total number of cards,
- 15
(a)
→ [tex]P(G_1 \ and \ G_2) = (\frac{10}{15} )\times (\frac{9}{14} )[/tex]
[tex]= \frac{5}{5}\times \frac{3}{7}[/tex]
[tex]= 0.4286[/tex]
(b)
→ [tex]P(At \ least \ one \ green) = 1-P(No \ green)[/tex]
[tex]= 1-(\frac{5}{15}\times \frac{4}{14} )[/tex]
[tex]= 1-(\frac{1}{3}\times \frac{2}{7} )[/tex]
[tex]= 0.90477[/tex]
(c)
→ [tex]P(G_2 | G_1) = \frac{P(G_2 \ and \ G_1)}{P(G_1)}[/tex]
[tex]= \frac{0.4286}{(\frac{10}{15}) }[/tex]
[tex]= \frac{0.4286}{(\frac{2}{3} )}[/tex]
[tex]= 0.64286[/tex]
(d) [tex]G_1[/tex] and [tex]G_2[/tex] are dependent.
Thus the above response is correct.
Learn more:
https://brainly.com/question/14651977