Respuesta :
Answer: 5166.347
Explanation:
The specific gravity of a solid [tex]SG[/tex] (also called relative density) is the ratio of the density of that solid [tex]\rho_{rock}[/tex] to the density of water [tex]\rho_{water}=1 kg/m^{3}[/tex] (normally at [tex]4\°C[/tex]):
[tex]SG=\frac{\rho_{rock}}{\rho_{water}}[/tex] (1)
On the other hand, the density of the rock is calculated by:
[tex]\rho_{rock}=\frac{m_{rock}}{V_{rock}}[/tex] (2)
Where:
[tex]m_{rock}[/tex] is the mass of the rock
[tex]V_{rock}=\frac{4}{3} \pi r^{3}[/tex] is the volume of the rock, since is spherical
Well, we already know the value of [tex]\rho_{water}[/tex], but we need to find [tex]\rho_{rock}[/tex] in order to find the rock's specific gravity; and in order to do this, we firsly have to find [tex]m_{rock}[/tex] and then calculate [tex]V_{rock}[/tex]:
In the case of the mass of the rock, we can calclate it by the following equation:
[tex]W_{rock}=m_{rock}g_{mars}[/tex] (3)
Where:
[tex]W_{rock}[/tex] is the weight if the rock in mars
[tex]g_{mars}=3.7 m/s^{2}[/tex] is the acceleration due gravity in Mars
Isolating [tex]m_{rock}[/tex]:
[tex]m_{rock}=\frac{W_{rock}}{g_{mars}}[/tex] (4)
[tex]m_{rock}=\frac{W_{rock}}{3.7 m/s^{2}}[/tex] (5)
To find [tex]W_{rock}[/tex] we can use the following equation of the potential gravitational energy [tex]U[/tex]:
[tex]U=W_{rock}H[/tex] (6)
Where:
[tex]U=2 J=2 Nm[/tex] is the potential energy
[tex]H=20 cm \frac{1m}{100 cm}=0.2 m[/tex] is the height at which the rock has the mentioned potential energy
Isolating [tex]W_{rock}[/tex]:
[tex]W_{rock}=\frac{U}{H}[/tex] (7)
[tex]W_{rock}=\frac{2 Nm}{0.2 m}[/tex] (8)
[tex]W_{rock}=10 N[/tex] (9)
Substituting (9) in (5):
[tex]m_{rock}=\frac{10 N}{3.7 m/s^{2}}[/tex] (10)
[tex]m_{rock}=2.702 kg[/tex] (11)
Substituting (11) in (2):
[tex]\rho_{rock}=\frac{2.702 kg}{V_{rock}}[/tex] (12) At this point we only need to find the volume of the rock, knowing its diameter is [tex]d=10 cm[/tex], hence its radius is [tex]r=\frac{d}{2}=5 cm[/tex]
[tex]V_{rock}=\frac{4}{3} \pi (5 cm)^{3}[/tex] (13)
[tex]V_{rock}=523.59 cm^{3} \frac{1 m^{3}}{(100 cm)^{3}}=0.000523 m^{3}[/tex] (14)
Substituting (14) in (12):
[tex]\rho_{rock}=\frac{2.702 kg}{0.000523 m^{3}}[/tex] (15)
[tex]\rho_{rock}=5166.34 kg/m^{3}[/tex] (16)
Substituting (16) in (1):
[tex]SG=\frac{5166.34 kg/m^{3}}{1 kg/m^{3}}[/tex] (17)
Finally we obtain the specific gravity of the rock:
[tex]SG=5166.347[/tex]