Respuesta :
Answer:
A
Step-by-step explanation:
The function is [tex]\frac{1620}{1+1.15e^{-0.042t}}[/tex]
To find the maximum population, we need to set t towards infinity to get our answer.
So, we replace time with maximum ([tex]\infty[/tex]). Let's check:
[tex]\frac{1620}{1+1.15e^{-0.042t}}\\=\frac{1620}{1+\frac{1.15}{e^{0.042t}}}\\=\frac{1620}{1+\frac{1.15}{e^{0.042(\infty)}}}\\=\frac{1620}{1+\frac{1.15}{\infty}}\\=\frac{1620}{1+0}\\=\frac{1620}{1}\\=1620[/tex]
The population of birds approaches 1620 as t goes towards infinity. So we can say the max population of the species is 1620.
Correct answer is A
Answer:
A.1620
Step-by-step explanation:
We are given that
[tex]P(t)=\frac{1620}{1+1.15e^{-0.042t}}[/tex]
[tex]t\geq 0[/tex]
We have to find the maximum population of the species in the region.
We know that
In fraction
Larger the denominator smaller the value of fraction.number.
Substitute t=0
[tex]P(0)=\frac{1620}{1+1.15e^0}=\frac{1620}{1+1.15}=753.5 [/tex]
[tex]P(t)=\lim_{t\rightarrow \infty}\frac{1620}{1+1.15e^{-0.042t}}=\frac{1620}{1+0}=1620[/tex]
When t increases then the values of [tex]e^{-0.042t}[/tex] decreases
As the denominator decreases the value of given function increases.
The maximum population of the species in the region=1620
A.1620