To find the extreme values of a function​ f(x,y) on a curve xequals​x(t), yequals​y(t), treat f as a function of the single variable t and use the chain rule to find where​ df/dt is zero. As in any other​ single-variable case, the extreme values of f are then found among the values at the critical points​ (points where​ df/dt is zero or fails to​ exist), and endpoints of the parameter domain. Find the absolute maximum and minimum values of the following function on the given curves. Use the parametric equations xequals2 cosine t​, yequals2 sine t.

Respuesta :

Answer:

Absolute maximum is 2  

Absolute minimum at -2

Step-by-step explanation:

The given parametric functions are:

[tex]x=2\cos t,y=2\sin t[/tex]

By the chain rule:

[tex]f'(t)=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]

[tex]\frac{df}{dt} =\frac{2 \cos t}{-2\sin t} =-\cot(t)[/tex]

At fixed points, [tex]f'(t)=0[/tex]

[tex]\implies -\cot (t)=0[/tex]

This gives [tex]t=\frac{\pi}{2} ,\frac{3\pi}{2}[/tex] on [tex]0\le t\le 2\pi[/tex]

This implies that the extreme points are [tex](2\cos \frac{\pi}{2}, 2\sin \frac{\pi}{2})=(0,2)[/tex] and [tex](2\cos \frac{3\pi}{2}, 2\sin \frac{3\pi}{2})=(0,-2)[/tex]

By eliminating the parameter, we have [tex]x^2+y^2=4[/tex]

This is a circle with radius 2, centered at the origin.

Hence (0,2) is an absolute maximum ,at [tex]t=\frac{\pi}{2}[/tex] and (0,-2) is an absolute minimum at  [tex]t=\frac{3\pi}{2}[/tex]

The extreme value of a function is the minimum and the maximum values of the function.

The extreme value is at: [tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]

The given parameters are:

[tex]\mathbf{x = 2cos t}[/tex]

[tex]\mathbf{y = 2sin t}[/tex]

Differentiate using chain rule. So, we have:

[tex]\mathbf{f'(t) = -\frac{2cost}{2sint}}[/tex]

Simplify

[tex]\mathbf{f'(t) = -\frac{cost}{sint}}[/tex]

Further simplify

[tex]\mathbf{f'(t) = -cot(t)}[/tex]

Set f'(t) to 0

[tex]\mathbf{ -cot(t) = 0}[/tex]

Divide both sides by -1

[tex]\mathbf{ cot(t) = 0}[/tex]

Take arccot of both sides

[tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]

Substitute the above values of t in [tex]\mathbf{x = 2cos t}[/tex] and [tex]\mathbf{y = 2sin t}[/tex]

[tex]\mathbf{x = 2 \times cos(\pi/2) = 2 \times 0 = 0}[/tex]

[tex]\mathbf{x = 2 \times sin(\pi/2) = 2 \times 1 = 2}[/tex]

[tex]\mathbf{x = 2 \times cos(3\pi/2) = 2 \times 0 = 0}[/tex]

[tex]\mathbf{x = 2 \times sin(3\pi/2) = 2 \times -1 = -2}[/tex]

So, we have:

[tex]\mathbf{(x,y) = \{(0,2),(0,-2)\}}[/tex]

Hence, the extreme value is at: [tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]

Read more about extreme values at:

https://brainly.com/question/12938843