Respuesta :
Answer:
Absolute maximum is 2
Absolute minimum at -2
Step-by-step explanation:
The given parametric functions are:
[tex]x=2\cos t,y=2\sin t[/tex]
By the chain rule:
[tex]f'(t)=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]
[tex]\frac{df}{dt} =\frac{2 \cos t}{-2\sin t} =-\cot(t)[/tex]
At fixed points, [tex]f'(t)=0[/tex]
[tex]\implies -\cot (t)=0[/tex]
This gives [tex]t=\frac{\pi}{2} ,\frac{3\pi}{2}[/tex] on [tex]0\le t\le 2\pi[/tex]
This implies that the extreme points are [tex](2\cos \frac{\pi}{2}, 2\sin \frac{\pi}{2})=(0,2)[/tex] and [tex](2\cos \frac{3\pi}{2}, 2\sin \frac{3\pi}{2})=(0,-2)[/tex]
By eliminating the parameter, we have [tex]x^2+y^2=4[/tex]
This is a circle with radius 2, centered at the origin.
Hence (0,2) is an absolute maximum ,at [tex]t=\frac{\pi}{2}[/tex] and (0,-2) is an absolute minimum at [tex]t=\frac{3\pi}{2}[/tex]
The extreme value of a function is the minimum and the maximum values of the function.
The extreme value is at: [tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]
The given parameters are:
[tex]\mathbf{x = 2cos t}[/tex]
[tex]\mathbf{y = 2sin t}[/tex]
Differentiate using chain rule. So, we have:
[tex]\mathbf{f'(t) = -\frac{2cost}{2sint}}[/tex]
Simplify
[tex]\mathbf{f'(t) = -\frac{cost}{sint}}[/tex]
Further simplify
[tex]\mathbf{f'(t) = -cot(t)}[/tex]
Set f'(t) to 0
[tex]\mathbf{ -cot(t) = 0}[/tex]
Divide both sides by -1
[tex]\mathbf{ cot(t) = 0}[/tex]
Take arccot of both sides
[tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]
Substitute the above values of t in [tex]\mathbf{x = 2cos t}[/tex] and [tex]\mathbf{y = 2sin t}[/tex]
[tex]\mathbf{x = 2 \times cos(\pi/2) = 2 \times 0 = 0}[/tex]
[tex]\mathbf{x = 2 \times sin(\pi/2) = 2 \times 1 = 2}[/tex]
[tex]\mathbf{x = 2 \times cos(3\pi/2) = 2 \times 0 = 0}[/tex]
[tex]\mathbf{x = 2 \times sin(3\pi/2) = 2 \times -1 = -2}[/tex]
So, we have:
[tex]\mathbf{(x,y) = \{(0,2),(0,-2)\}}[/tex]
Hence, the extreme value is at: [tex]\mathbf{t = \frac{\pi}{2}, \frac{3\pi}{2}}[/tex]
Read more about extreme values at:
https://brainly.com/question/12938843