Respuesta :
Answer:
195 m/s south
Explanation:
Momentum = mass × velocity
879000 kg m/s = (4500 kg) v
v = 195.33 m/s
Rounding, the velocity is approximately 195 m/s south.
Answer:
[tex]\large \boxed{\text{195 m$\cdot$ s}^{-1}\text{ south}}[/tex]
Explanation:
The equation for momentum is
[tex]\vec{p} = m\vec{v}[/tex]
Since momentum is a vector, we must specify both speed and direction.
Data:
p = 879 000 kg·m·s⁻¹ south
m = 4500 kg
Calculation:
[tex]\begin{array}{rcl}\text{879 000 kg$\cdot$ m$\cdot$ s}^{-1} & = & \text{4500 kg} \times v\\v & = & \dfrac{\text{879 000 kg $\cdot$ m$\cdot$ s}^{-1}}{\text{4500 kg}}\\\\& = & \textbf{195 m$\cdot$ s}^{\mathbf{-1}}\\\end{array}\\\text{The velocity of the train is $\large \boxed{\textbf{195 m$\cdot$ s}^{\mathbf{-1}}\textbf{ south}}$}[/tex]