Answer:
Acceleration, [tex]a=15.33\ m/s^2[/tex]
Explanation:
Initial speed of the body, [tex]u=13\ cm/s[/tex]
Initial position, [tex]x_i=3.7\ cm[/tex]
Final position, [tex]x_f=-6.3\ cm[/tex]
Time taken, t = 2.27 s
We need to find the x-component of its acceleration. Using second equation of kinematics as :
[tex]x_f-x_i=ut+\dfrac{1}{2}at^2[/tex]
[tex]-6.3-3.7=(13)(2.27)+\dfrac{1}{2}(2.27)^2a[/tex]
[tex]-10-29.51=\dfrac{1}{2}(2.27)^2a[/tex]
[tex]a=\dfrac{-39.51\times 2}{(2.27)^2}=-15.33\ m/s^2[/tex]
So, the x-component of its acceleration is [tex]15.33\ m/s^2[/tex]. The body is decelerating. Hence, this is the required solution.