Answer:
A) [tex]\rho_c = 1.4223 g/cm^3[/tex]
B) 66.6%
Explanation:
A) expression for crystallanity is given as
[tex]C =\frac{\rho_c(\rho_S -\rho_A)}{\rho_S (\rho_c -\rho_A)}[/tex] ........1
where, \rho_c = density of crystalline, \rho_a = density of amorphous material,
[tex]\rho_s[/tex] = density of specimen
C = 0.743 [given]
[tex]0.743 =\frac{\rho_c(1.408 -\rho_A)}{1.408 (\rho_c -\rho_A)}[/tex]
[tex]1.2427\rho_c - 1.2427\rho_A - 1.408\rho_c + \rho_c \rho_A = 0[/tex]
[tex]-0.1653\rho_c - 1.2427\rho_A = - \rho_c\rho_A[/tex] ........2
SUBSTITUTE[tex] \rho_s[/tex] value of second specimen in 1 equation we get
[tex]-0.923 \rho_c - 0.419\rho_A = -\rho_c \rho_A[/tex] .......3
ON COMPARING 2 AND 3rd equation we get
[tex]\rho_c = 1.4223 g/cm^3[/tex]
[tex]\rho_A = 1.3085 g/m^3[/tex]
b)
[tex]C =\frac{\rho_c(\rho_S -\rho_A)}{\rho_S (\rho_c -\rho_A)}[/tex]
substitute value to ger crystallanity
[tex]C =\frac{1.422 (1.382 -1.3085)}{1.382 (1.422 -1.3085)}[/tex]
C = 66.6 %