Answer:
Part a)
[tex]T = 342.5 \hat i + 675\hat j[/tex]
Part b)
[tex]F_{net} = 342.5\hat i - 174\hat j[/tex]
Part c)
[tex]F = 384.2 N[/tex]
Part d)
[tex]\theta = 333 degree[/tex]
Part e)
[tex]a = 4.4 m/s^2[/tex]
Part f)
[tex]\theta = 333 degree[/tex]
Explanation:
Part a)
Magnitude of tension force is given as
[tex]T = 757 N[/tex] at 26.9 degree with vertical
[tex]T = 757 sin26.9 \hat i + 757 cos26.9 \hat j[/tex]
[tex]T = 342.5 \hat i + 675\hat j[/tex]
Part b)
Net force on Tarzen is given as
[tex]F_{net} = T + F_g[/tex]
[tex]F_{net} = 342.5 \hat i + 675\hat j - 849 \hat j[/tex]
[tex]F_{net} = 342.5\hat i - 174\hat j[/tex]
Part c)
magnitude of the force is given as
[tex]F = \sqrt{F_x^2 + F_y^2}[/tex]
[tex]F = \sqrt{342.5^2 + 174^2}[/tex]
[tex]F = 384.2 N[/tex]
Part d)
Direction of the force is given as
[tex]tan\theta = \frac{F_y}{F_x}[/tex]
[tex]tan\theta = \frac{-174}{342.5}[/tex]
[tex]\theta = 333 degree[/tex]
Part e)
Magnitude of the acceleration
[tex]a = \frac{F}{m}[/tex]
[tex]m = \frac{849}{9.81} = 86.5 kg[/tex]
tex]a = \frac{384.2}{86.5}[/tex]
[tex]a = 4.4 m/s^2[/tex]
Part f)
Direction of acceleration is same as the direction of the force
[tex]\theta = 333 degree[/tex]