A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insulated on one side, while the other side is exposed to a fluid at 32°C. The convection heat transfer coefficient between the wall and the fluid is 500 W/m2·K. Determine the maximum temperature in the wall.

Respuesta :

Answer:

The maximum temperature is 212 °C.

Explanation:

Heat generation ,q

[tex]q=0.3\ MW/m^3[/tex]

Heat flux

[tex]q"=0.3\times 0.1 MW/m^2[/tex]

[tex]q"=0.03 MW/m^2[/tex]

[tex]q"=30 KW/m^2[/tex]

We know that total heat = heat flux x area

Q= 30 KW A

The maximum temperature will be at the insulated surface because fro insulated surface does not allow  to flow the heat.

The total thermal resistance

[tex]R=\dfrac{L}{KA}+\dfrac{1}{hA}[/tex]

[tex]R=\dfrac{0.1}{25A}+\dfrac{1}{500A}[/tex]

[tex]R=\dfrac{0.006}{A}[/tex]

Heat transfer Q

Q=ΔT/R

Lets take temperature at insulated side is T

[tex]30\times 1000 A=\dfrac{T-32}{\dfrac{0.006}{A}}[/tex]

[tex]30\times 1000 =\dfrac{T-32}{0.006}[/tex]

T= 180 + 32

T=212 °C.

So the maximum temperature is 212 °C.

Ver imagen Netta00