Answer:
Part a)
[tex]F = 135.7 N[/tex]
Part b)
[tex]F = 62.5 N[/tex]
Explanation:
Part a)
If block is sliding up then net force must be zero and friction will be in opposite to the direction of motion of the block
[tex]Fcos\theta = mg + F_f[/tex]
[tex]Fsin\theta = F_n[/tex]
so we have
[tex]Fcos\theta = mg + \mu(Fsin\theta)[/tex]
[tex]F(cos\theta - \mu sin\theta) = mg[/tex]
[tex]F = \frac{mg}{cos\theta - \mu sin\theta}[/tex]
[tex]F = \frac{55}{cos50 - 0.310(sin50)}[/tex]
[tex]F = 135.7 N[/tex]
Part b)
If block is sliding down then net force must be zero and friction will be in opposite to the direction of motion of the block
[tex]Fcos\theta = mg - F_f[/tex]
[tex]Fsin\theta = F_n[/tex]
so we have
[tex]Fcos\theta = mg - \mu(Fsin\theta)[/tex]
[tex]F(cos\theta + \mu sin\theta) = mg[/tex]
[tex]F = \frac{mg}{cos\theta + \mu sin\theta}[/tex]
[tex]F = \frac{55}{cos50 + 0.310(sin50)}[/tex]
[tex]F = 62.5 N[/tex]