An electromagnetic wave in a vacuum traveling in the +x direction generated by a variable source initially has a wavelength λ of 245 μm and a maximum electric field Emax in the +y direction of 6.50×10−3 V/m . If the period of the wave is then increased by a factor of 1.80, what is the equation of the resulting magnetic field component of the wave?

Respuesta :

Answer:

The resulting magnetic field component of the wave

[tex]B_{max}=2.166\times10^{-12}\ T[/tex]

[tex]k =25645.65\ m^{-1}[/tex]

[tex]\omega =4.274\times10^{12}[/tex]

Explanation:

Given that,

Wavelength = 245 μm

Electric field [tex]E= 6.50\times10^{-3}\ V/m[/tex]

We need to calculate the wave number and angular frequency

Using formula of wave number

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

[tex]k=\dfrac{2\pi}{245\times10^{-6}}[/tex]

[tex]k=25645.65\ m^{-1}[/tex]

The angular frequency is

[tex]\omega_{0}=\dfrac{2\pi}{T}[/tex]

[tex]\omega_{0}=\dfrac{2\pi}{\dfrac{\lambda}{c}}[/tex]

[tex]\omega_{0}=25645.65\times3\times10^{8}[/tex]

[tex]\omega_{0}=7.693695\times10^{12}\ rad/sec[/tex]

If the wave period increases by a factor of 1.80 times

[tex]\omega=\dfrac{2\pi}{1.80T}[/tex]

[tex]\omega=\dfrac{\omega_{0}}{1.80}[/tex]

[tex]\omega=\dfrac{7.693695\times10^{12}}{1.80}[/tex]

[tex]\omega=4.274\times10^{12}\ rad/sec[/tex]

The maximum [tex]\vec{E}[/tex] and [tex]\vec{B}[/tex] related by the equation

[tex]B_{max}=\dfrac{E_{max}}{c}[/tex]

Put the value in the equation

[tex]B_{max}=\dfrac{6.50\times10^{-3}}{3\times10^{8}}[/tex]

[tex]B_{max}=2.166\times10^{-12}\ T[/tex]

The magnetic field is perpendicular to the electric field.

So, the equation is

[tex]B=[2.166\times10^{-12}]exp(25645.65\ x-4.274\times10^{12}\ t). \hat{Z}[/tex]

Hence,  The resulting magnetic field component of the wave

[tex]B_{max}=2.166\times10^{-12}\ T[/tex]

[tex]k =25645.65\ m^{-1}[/tex]

[tex]\omega =4.274\times10^{12}[/tex]