Respuesta :
Answer:
[tex](ab)(x)[/tex]
Step-by-step explanation:
If [tex]a(x) = 2x - 4[/tex] and [tex]b(x) = x + 2,[/tex] then
A.
[tex](ab)(x)=(2x-4)(x+2)=2(x-2)(x+2)=2(x^2-4)=2x^2-8[/tex]
B.
[tex]\dfrac{a}{b}(x)=\dfrac{2x-4}{x+2}[/tex]
C.
[tex](a-b)(x)=(2x-4)-(x+2)=2x-4-x-2=x-6[/tex]
D.
[tex](a+b)(x)=(2x-4)+(x+2)=2x-4+x+2=3x-2[/tex]
The only quadratic function appears in option A.
The expressions that produce a quadratic function is a(x)b(x)
Quadratic function
This is a function with a leading degree of 2:
Givene the fnctions a(x) = 2x - 4 and b(x) = x + 2. The product of the function will given a quadratic function.
- a(x)b(x) = (2x - 4)(x+2)
Take the product
a(x)b(x) = 2x^2 - 2x - 8
Hence the expressions that produce a quadratic function is a(x)b(x)
Learn more on quadratic functions here: https://brainly.com/question/1214333