If a(x) = 2x - 4 and b(x) = x + 2, which of the following expressions produces a quadratic function? (ab)(x) (StartFraction a Over b EndFraction) (x) (a – b)(x) (a + b)(x)

Respuesta :

frika

Answer:

[tex](ab)(x)[/tex]

Step-by-step explanation:

If [tex]a(x) = 2x - 4[/tex] and [tex]b(x) = x + 2,[/tex] then

A.

[tex](ab)(x)=(2x-4)(x+2)=2(x-2)(x+2)=2(x^2-4)=2x^2-8[/tex]

B.

[tex]\dfrac{a}{b}(x)=\dfrac{2x-4}{x+2}[/tex]

C.

[tex](a-b)(x)=(2x-4)-(x+2)=2x-4-x-2=x-6[/tex]

D.

[tex](a+b)(x)=(2x-4)+(x+2)=2x-4+x+2=3x-2[/tex]

The only quadratic function appears in option A.

The expressions that produce a quadratic function is a(x)b(x)

Quadratic function

This is a function with a leading degree of 2:

Givene the fnctions a(x) = 2x - 4 and b(x) = x + 2. The product of the function will given a quadratic function.

  • a(x)b(x) = (2x - 4)(x+2)

Take the product

a(x)b(x) = 2x^2 - 2x - 8

Hence the expressions that produce a quadratic function is a(x)b(x)

Learn more on quadratic functions here: https://brainly.com/question/1214333