a track star in the long jump goes into the jump at 12 m/s and launches herself at 20.0 degrees above the horizontal. What is the magnitude of her horizontal displacement?
a. 4.6 m
b. 9.2 m
c. 13 m
d. 15 m

Respuesta :

znk

Answer:

[tex]\large \boxed{\text{b. 9.4 m}}[/tex]

Explanation:

1. Break down the velocity into its horizontal and vertical components

[tex]\cos 20^{\circ} = \dfrac{v_{\text{h}}}{12} = 0.9397\\\\v_{\text{h}} = \text{11.3 m/s}[/tex]

[tex]\sin 20 = \dfrac{v_{\text{v}}}{12} = 0.3420\\\\v_{\text{v}} = \text{4.10 m/s}[/tex]

2. Calculate the time of flight

Use the vertical component of velocity to calculate the time to the height of the jump.

[tex]v = gt\\t = \dfrac{v}{g} = \dfrac{\text{4.10 m$\cdot$ s}^{-1}}{\text{9.807 m$\cdot$ s}^{-2}}= \text{0.419 s}[/tex]

It will take the same time to reach the ground.

Thus,

Time of flight = 2t = 2 × 0.419 s  = 0.837 s

3. Calculate the horizontal distance

s = vt = 11.3 m·s⁻¹ × 0.837 s = 9.4 m  

[tex]\text{Her horizontal displacement is $\large \boxed{\textbf{9.4 m}}$}[/tex]

Ver imagen znk

Answer:

b. 9.2m

Explanation:

Vertical component of velocity:

12sin20

a = -9.8

t for max height

0 = 12sin20 - 9.8t

t = 0.4188001755

Time of the journey:

2t = 0.837600351

Horizontal component of velocity:

12cos20

Horizontal displacement:

(12cos20)(0.837600351)

9.445042428 m