Answer:
[tex]54[/tex] N
Explanation:
[tex]W[/tex] = weight of the book acting downward = 40 N
[tex]f_{s}[/tex] = Static frictional force between hands and the book acting upwards
[tex]N[/tex] = Magnitude of minimum pushing force
[tex]\mu _{s}[/tex] = Coefficient of static friction = 0.37
Static frictional force between the hands and the book can be given as
[tex]f_{s} = \mu _{s} N[/tex] eq-1
The frictional force in upward direction balances the weight of the book is downward direction, hence
[tex]f_{s} + f_{s} = W[/tex]
[tex]2f_{s} = W[/tex]
Using eq-1
[tex]2 \mu _{s} N = W[/tex]
[tex]2 (0.37) N = 40[/tex]
[tex](0.37) N = 20[/tex]
[tex]N = 54[/tex] N