Answer:
[tex]\theta = 67.22 degree[/tex]
Explanation:
Let say the ball is projected at an angle with horizontal
So here two components of the velocity of the ball is given as
[tex]v_x = 8.15 cos\theta[/tex]
[tex]v_y = 8.15 sin\theta[/tex]
now the displacement in x direction is given as
[tex]x = v_x t[/tex]
[tex]4.57 = (8.15 cos\theta)t[/tex]
in y direction it is given as
[tex]y = y_o + v_y t - \frac{1}{2}gt^2[/tex]
[tex]3.05 = 2.44 + (8.15 sin\theta) t - 4.9 t^2[/tex]
now from above two equations
[tex]0.61 = 4.57 tan\theta - 4.9(\frac{4.57}{8.15 cos\theta})^2[/tex]
[tex]0.61 = 4.57 tan\theta - 1.54(1 + tan^2\theta)[/tex]
[tex]1.54 tan^2\theta - 4.57 tan\theta + 2.15 = 0[/tex]
[tex]\theta = 67.22 degree[/tex]