Suppose a gust of wind has carried a 44-μm-diameter dust particle to a height of 310 m. If the wind suddenly stops, how long will it take the dust particle to settle back to the ground? Dust has a density of 2700 kg/m3, the viscosity of 25∘C air is 2.0×10−5 N⋅s/m2, and you can assume that the falling dust particle reaches terminal speed almost instantly.

Respuesta :

Answer:

t=39.76 min

Explanation:

Given that

D= 44 μm

R= 22 μm

h=310 m

[tex]density = 2700\ kg/m^3[/tex]

[tex]viscosity = 2.0\times 10^{-5} Ns/m^2[/tex]

We know that drag force

F = 6πμRV

V=Terminal velocity

R=Radius

μ=Dynamic velocity

At the terminal condition

m g = 6πμRV              -----------1

m=ρ x Volume

[tex]Volume= \dfrac{4}{3}\pi R^3[/tex]

[tex]Volume= \dfrac{4}{3}\times \pi \times (22\times 10^{-6})^3\ m^3[/tex]

[tex]Volume=4.4\times 10^{-14}\ m^3[/tex]

[tex]m=4.4\times 10^{-14}\times 2700\ kg[/tex]

[tex]m=1.1\times 10^{-10}\ kg[/tex]

Now by putting the value in equation 1

[tex]1.1\times 10^{-10}\times 9.81=6\times \pi \times 2.0\times 10^{-5}\times 22\times 10^{-6}\times V[/tex]

[tex]V=\dfrac{1.1\times 10^{-10}\times 9.81}{6\times \pi \times 2.0\times 10^{-5}\times 22\times 10^{-6}}\ m/s [/tex]

V= 0.13 m/s

So time taken by particle

t= h/V

t = 310/0.13

t=2384.6 sec

t=39.76 min

Answer:

Time=185.459 s  in seconds

Time=3.091 min     in minutes

Explanation:

Given

density=2700 kg/[tex]m^{3}[/tex]

Diameter=44 μm

radius=diameter/2

radius=44/2=22 μm

Volume=(4/3)*π*[tex]r^{3}[/tex]

Volume=[tex](4/3)*(3.14)*(22*10^{-6} )^{3}[/tex]

Volume=[tex]4.46*10^{-14}[/tex] [tex]m^{3}[/tex]

mass=Volume*density

mass=2700*4.46*[tex]10^{-14}[/tex]

mass=1.2042*[tex]10^{10}[/tex]

density of air=1.1839 kg/[tex]m^{3}[/tex]

Projected area=[tex]\pi *r^2[/tex]

Projected area=[tex]3.14*(22*10^{-6})^2[/tex]

Projected area=1.5197*[tex]10^{-9}[/tex]

[tex]C_{d}[/tex] for sphere=0.47

Terminal velocity=v=[tex]\sqrt{(2*m*g)/A*C_{d} *density }[/tex]

where density is the air density.

Substitute values we will get

v=1.6715 m/s

Time=distance/velocity

height=distance=310 m

Time=310/1.6715

Time=185.459 s  in seconds

Time=3.091 min     in minutes