Answer:
Total Energy 25 j/s
Explanation:
Given Data:
UV light wavelength range 320 nm - 400 nm
Duration of radiation 2.5 h
Exposed area [tex]0.45 m^2 = 4500 cm^2[/tex]
Number of photons [tex]2.0\times 10^{16} [/tex]
Average wavelength [tex]= \frac{320 + 400}{2} = 360\times 10^{-9} m[/tex]
Energy per photon [tex]=\frac{hc}{average\ wavelenght}[/tex]
[tex]= \frac{6.626\times 10^{-34}\times 3\times 10^8}{360\times 10^{-9}}[/tex]
[tex]=5.522 \times 10^{-22} J[/tex]
Total photon hitting the ground [tex]= 2.0\times 10^{16} \times 4500 = 9.9\times 10^{19} photons[/tex]
Number of photons observed [tex]= \frac{9.9\times 10^{19}}{2} = 4.5 \times 10^{19} photons[/tex]
Total ENERGY [tex]= 4.5 \times 10^{19} \times 5.522 \times 10^{-22} = 25 J/s[/tex]