Answer:
[tex]F_1=F_2[/tex]
Step-by-step explanation:
Given that
For system 1
[tex]U_1(x)=Cx^2+Bx^3[/tex]
For system 2
[tex]U_2(x)=A+Cx^2+Bx^3[/tex]
A is positive quantity
We know that
Force F
[tex]F=\dfrac{dU}{dx}[/tex]
For system 1
[tex]\dfrac{dU}{dx}=2Cx+3Bx^2[/tex]
[tex]F_1=2Cx+3Bx^2[/tex]
For system 2
[tex]\dfrac{dU}{dx}=0+2Cx+3Bx^2[/tex]
[tex]F_2=2Cx+3Bx^2[/tex]
[tex]F_1=2Cx+3Bx^2[/tex]
[tex]F_2=2Cx+3Bx^2[/tex]
[tex]F_1=F_2[/tex]
So from above equations we can say that force on both system is equal at given value of x.