Respuesta :
Answer:
(1) No matter what's the value of [tex]h[/tex], [tex]\vec{v}_3[/tex] is never in the span of [tex]\vec{v}_1[/tex] and [tex]\vec{v}_2[/tex].
(2) The three vectors [tex]\vec{v}_1[/tex], [tex]\vec{v}_2[/tex], and [tex]\vec{v}_3[/tex] are always linearly dependent for all real [tex]h[/tex].
Step-by-step explanation:
(a)
If [tex]\vec{v}_3[/tex] is in the span of [tex]\vec{v}_1[/tex] and [tex]\vec{v}_2[/tex], there need to exist real [tex]a[/tex] and [tex]b[/tex] such that
[tex]a\; \vec{v}_1 + b\; \vec{v}_2 = \vec{v}_3[/tex].
Assume that such [tex]a[/tex] and [tex]b[/tex] do exist.
In other words,
[tex]\displaystyle a \left[\begin{array}{c}{1 \\ -4\\2} \end{array}\right] + b\left[\begin{array}{c}{-4 \\ 16\\-8}\end{array}\right] = \left[\begin{array}{c}5 \\7 \\ h\end{array}\right][/tex].
[tex]\displaystyle \left[\begin{array}{c}{a \\ -4a\\2a} \end{array}\right] + \left[\begin{array}{c}{-4b \\ 16b\\-8b}\end{array}\right] = \left[\begin{array}{c}5 \\7 \\ h\end{array}\right][/tex].
[tex]\left\{\begin{array}{rrcr} a & - 4b &=& 5\\ -4a & + 16b &= &7\\2a & -8b & =&h\end{aligned}\right.[/tex].
Rewrite as an augmented matrix and row-reduce:
[tex]\displaystyle \left[ \begin{array}{cc|c} 1 & -4 & 5 \\ -4 & 16 & 7 \\ 2 & -8 & h\end{array}\right][/tex].
(Add four times row one to row two and [tex]-2[/tex] times row one to row three.)
[tex]\displaystyle \sim \left[ \begin{array}{cc|c} 1 & -4 & 5 \\ 0 & 0 & 27 \\ 0 & 0 & h - 10\end{array}\right][/tex].
Note that in row two,
- Left-hand side: [tex]0[/tex];
- Right-hand side: [tex]27\neq 0[/tex].
In other words, this system is inconsistent. There's no real [tex]a[/tex] and [tex]b[/tex] that would satisfy the condition
[tex]a\; \vec{v}_1 + b\; \vec{v}_2 = \vec{v}_3[/tex].
Hence [tex]\forall h \in \mathbb{R}, \quad \vec{v}_3\not \in \text{Span}\{\vec{v}_1, \vec{v}_2\}[/tex].
There's no real [tex]h[/tex] that allows [tex]h[/tex], [tex]\vec{v}_3[/tex] to be part of the span of [tex]\vec{v}_1[/tex] and [tex]\vec{v}_2[/tex].
(b)
If the three vectors are linearly dependent, at least one of them can be expressed as the linear combination of the other two.
Note that
[tex]\vec{v}_2 = (-4)\vec{v}_1 + 0 \; \vec{v}_3[/tex]. In other words, [tex]\vec{v}_2[/tex] can be written as the linear combination of the other two vectors. Additionally, since the coefficient in front of [tex]\vec{v}_3[/tex] is zero, neither the exact value of [tex]\vec{v}_3[/tex] nor the value of [tex]h[/tex] will make a difference. Therefore, for all [tex]h \in \mathbb{R}[/tex], the three vectors [tex]\vec{v}_1[/tex], [tex]\vec{v}_2[/tex], and [tex]\vec{v}_3[/tex] are linearly dependent.