What is the midpoint of the longest side of the triangle with vertices (1,4) ,(3,4), and (3,6)?

Answer:
The answer to your question is: C
Step-by-step explanation:
Data
A (1 , 4)
B (3, 4)
C(3, 6)
Formula
d = [tex]\sqrt{(x2-x1)^{2} + (y2 - y1)^{2} }[/tex]
Process
dAB = [tex]\sqrt{(3 - 1)^{2} + (4 - 4)^{2} }[/tex]
dAB = [tex]\sqrt{(2)^{2} + (0)^{2} }[/tex]
dAB = 2
dBC = [tex]\sqrt{(3-3)^{2} + (6 - 4)^{2} }[/tex]
dBC = [tex]\sqrt{(0)^{2} + (2)^{2} }[/tex]
dBC = 2
dAC = [tex]\sqrt{(3-1)^{2} + (6 - 4)^{2} }[/tex]
dAC = [tex]\sqrt{(2)^{2} + (2)^{2} }[/tex]
dAC = √8
Longest side = AC
midpoint x = [tex]\frac{1 + 3}{2} = \frac{4}{2} = 2[/tex]
midpoint y = [tex]\frac{4 + 6}{2} = \frac{10}{2} = 5[/tex]
Midpoint = ( 2, 5)