Respuesta :
Answer:
m∠B=144°
Step-by-step explanation:
see the attached figure to better understand the problem
we have
Two parallel lines cut by a transversal.
so
m∠A=m∠B -----> by alternate interior angles
substitute the given values and solve for x
[tex](10x+24)\°=(6x+72)\°[/tex]
[tex]10x-6x=72-24[/tex]
[tex]4x=48[/tex]
[tex]x=12[/tex]
Find the measure of m∠B
m∠B=(6x+72)°
substitute the value of x
m∠B=(6(12)+72)°=144°

Answer:
Vertical Angles
Step-by-step explanation:
This is correct on Khan Academy!