while only 5% of babies have learned to walk by the age of 10 months, 75% are walking by 13 months. if the age at which babies develop the ability to walk can be described by a normal model, find the parameters

Respuesta :

Answer:

[tex]mu=12.1299[/tex]

[tex]\sigma=1.2987[/tex]

Step-by-step explanation:

In the normal distribution curve, we will have 5% below 10 months [horizontal axis] and 75% below 13 months [horizontal axis].

We need to find z-score using z-table [normal table] that corresponds to

5% = 0.05

and

75% = 0.75

Zscore formula:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Where mu is mean and sigma is standard deviation [these are the 2 parameters we are seeking]

So, 0.05 corresponds to z = -1.64, and

0.75 corresponds to z = 0.67

Now we put both of these into z-score formula and solve both equations for mu and sigma.

[tex]-1.64=\frac{10-\mu}{\sigma}[/tex]

and

[tex]0.67=\frac{13-\mu}{\sigma}[/tex]

The first equation becomes:

[tex]-1.64=\frac{10-\mu}{\sigma}\\-1.64\sigma+\mu=10\\mu=10+1.64\sigma\\[/tex]

Now, simplifying 2nd equation and putting this in:

[tex]0.67=\frac{13-\mu}{\sigma}\\0.67\sigma=13-(10+1.64\sigma)\\0.67\sigma=13-10-1.64\sigma\\2.31\sigma=3\\\sigma=1.2987[/tex]

Now finding mu:

[tex]\mu=10+1.64(1.2987)\\\mu=12.1299[/tex]

These two MU(mean) and SIGMA(standard deviation) are the 2 parameters.

The parameters of a normal distribution are the mean and the standard deviation.

  • The mean of the distribution is: 12.132
  • The standard deviation of the distribution is: 1.300

From the question, we have:

The 5% of babies means that, the p-value is:

[tex]p = 5\%[/tex] and [tex]x = 10[/tex]

The z score at [tex]p = 5\%[/tex] is:

[tex]z = -1.64[/tex]

Using z formula, we have:

[tex]z = \frac{x - \mu}{\sigma}[/tex]

This gives:

[tex]-1.64 = \frac{10 - \mu}{\sigma}[/tex]

Cross multiply

[tex]-1.64\sigma = 10 - \mu[/tex]

Make the mean the subject

[tex]\mu= 10 +1.64\sigma[/tex]

Also:

The 75% of babies means that, the p-value is:

[tex]p = 75\%[/tex] and [tex]x = 13[/tex]

The z score at [tex]p = 75\%[/tex] is:

[tex]z = 0.67[/tex]

Recall that:

[tex]z = \frac{x - \mu}{\sigma}[/tex]

This gives:

[tex]067 = \frac{13 - \mu}{\sigma}[/tex]

Substitute [tex]\mu= 10 +1.64\sigma[/tex]

[tex]0.67 = \frac{13 - 10 - 1.64\sigma}{\sigma}[/tex]

[tex]0.67 = \frac{3 - 1.64\sigma}{\sigma}[/tex]

Cross multiply

[tex]0.67\sigma = 3 - 1.64\sigma[/tex]

Collect like terms

[tex]0.67\sigma +1.64\sigma= 3[/tex]

[tex]2.31\sigma= 3[/tex]

Divide both sides by 2.31

[tex]\sigma= 1.300[/tex]

Substitute [tex]\sigma= 1.300[/tex] in [tex]\mu= 10 +1.64\sigma[/tex]

[tex]\mu = 10 + 1.64 \times 1.300[/tex]

[tex]\mu = 12.132[/tex]

Hence, the parameter is (12.132, 1.300)

Read more about normal distribution at:

https://brainly.com/question/13759327