Let y(t) be the solution to y˙=3te−y satisfying y(0)=3 . (a) Use Euler's Method with time step h=0.2 to approximate y(0.2),y(0.4),...,y(1.0) . k tk yk 0 0 3 1 0.2 equation editor Equation Editor 2 0.4 equation editor Equation Editor 3 0.6 equation editor Equation Editor 4 0.8 equation editor Equation Editor 5 1.0 equation editor Equation Editor (b) Use separation of variables to find y(t) exactly. y(t) = equation editor Equation Editor (c) Compute the error in the approximations to y(0.2),y(0.6) , and y(1). |y(0.2)−y1|=

Respuesta :

Answer:

  • [tex]y(0.2)=3[/tex], [tex]y(0.4)=3.005974448[/tex], [tex]y(0.6)=3.017852169[/tex], [tex]y(0.8)=3.035458382[/tex], and [tex]y(1.0)=3.058523645[/tex]
  • The general solution is [tex]y=\ln \left(\frac{3t^2}{2}+e^3\right)[/tex]
  • The error in the approximations to y(0.2), y(0.6), and y(1):

[tex]|y(0.2)-y_{1}|=0.002982771[/tex]

[tex]|y(0.6)-y_{3}|=0.008677796[/tex]

[tex]|y(1)-y_{5}|=0.013499859[/tex]

Step-by-step explanation:

Point a:

The Euler's method states that:

[tex]y_{n+1}=y_n+h \cdot f \left(t_n, y_n \right)[/tex] where [tex]t_{n+1}=t_n + h[/tex]

We have that [tex]h=0.2[/tex], [tex]t_{0}=0[/tex], [tex]y_{0} =3[/tex], [tex]f(t,y)=3te^{-y}[/tex]

  • We need to find [tex]y(0.2)[/tex] for [tex]y'=3te^{-y}[/tex], when [tex]y(0)=3[/tex], [tex]h=0.2[/tex] using the Euler's method.

So you need to:

[tex]t_{1}=t_{0}+h=0+0.2=0.2[/tex]

[tex]y\left(t_{1}\right)=y\left(0.2)=y_{1}=y_{0}+h \cdot f \left(t_{0}, y_{0} \right)=3+h \cdot f \left(0, 3 \right)=[/tex]

[tex]=3 + 0.2 \cdot \left(0 \right)= 3[/tex]

[tex]y(0.2)=3[/tex]

  • We need to find [tex]y(0.4)[/tex] for [tex]y'=3te^{-y}[/tex], when [tex]y(0)=3[/tex], [tex]h=0.2[/tex] using the Euler's method.

So you need to:

[tex]t_{2}=t_{1}+h=0.2+0.2=0.4[/tex]

[tex]y\left(t_{2}\right)=y\left(0.4)=y_{2}=y_{1}+h \cdot f \left(t_{1}, y_{1} \right)=3+h \cdot f \left(0.2, 3 \right)=[/tex]

[tex]=3 + 0.2 \cdot \left(0.02987224102)= 3.005974448[/tex]

[tex]y(0.4)=3.005974448[/tex]

The Euler's Method is detailed in the following table.

Point b:

To find the general solution of [tex]y'=3te^{-y}[/tex] you need to:

Rewrite in the form of a first order separable ODE:

[tex]e^yy'\:=3t\\e^y\cdot \frac{dy}{dt} =3t\\e^y \:dy\:=3t\:dt[/tex]

Integrate each side:

[tex]\int \:e^ydy=e^y+C[/tex]

[tex]\int \:3t\:dt=\frac{3t^2}{2}+C[/tex]

[tex]e^y+C=\frac{3t^2}{2}+C\\e^y=\frac{3t^2}{2}+C_{1}[/tex]

We know the initial condition y(0) = 3, we are going to use it to find the value of [tex]C_{1}[/tex]

[tex]e^3=\frac{3\left(0\right)^2}{2}+C_1\\C_1=e^3[/tex]

So we have:

[tex]e^y=\frac{3t^2}{2}+e^3[/tex]

Solving for y we get:

[tex]\ln \left(e^y\right)=\ln \left(\frac{3t^2}{2}+e^3\right)\\y\ln \left(e\right)=\ln \left(\frac{3t^2}{2}+e^3\right)\\y=\ln \left(\frac{3t^2}{2}+e^3\right)[/tex]

Point c:

To compute the error in the approximations y(0.2), y(0.6), and y(1) you need to:

Find the values y(0.2), y(0.6), and y(1) using [tex]y=\ln \left(\frac{3t^2}{2}+e^3\right)[/tex]

[tex]y(0.2)=\ln \left(\frac{3(0.2)^2}{2}+e^3\right)=3.002982771[/tex]

[tex]y(0.6)=\ln \left(\frac{3(0.6)^2}{2}+e^3\right)=3.026529965[/tex]

[tex]y(1)=\ln \left(\frac{3(1)^2}{2}+e^3\right)=3.072023504[/tex]

Next, where [tex]y_{1}, y_{3}, \:and \:y_{5}[/tex] are from the table.

[tex]|y(0.2)-y_{1}|=|3.002982771-3|=0.002982771[/tex]

[tex]|y(0.6)-y_{3}|=|3.026529965-3.017852169|=0.008677796[/tex]

[tex]|y(1)-y_{5}|=|3.072023504-3.058523645|=0.013499859[/tex]

Ver imagen franciscocruz28