a.) What is the minimum uncertainty in an electron's velocity (Δmin) if the position is known within 13 Å? b.) What is the minimum uncertainty in a helium atom's velocity (Δmin) if the position is known within 1.0 Å?

Respuesta :

Answer :

(a) The minimum uncertainty in an electron's velocity is, [tex]4.5\times 10^{4}m/s[/tex]

(b) The minimum uncertainty in a helium atom's velocity is, [tex]7.9\times 10^{1}m/s[/tex]

Explanation :

According to the Heisenberg's uncertainty principle,

[tex]\Delta x\times \Delta p=\frac{h}{4\pi}[/tex] ...........(1)

where,

[tex]\Delta x[/tex] = uncertainty in position

[tex]\Delta p[/tex] = uncertainty in momentum

h = Planck's constant

And as we know that the momentum is the product of mass and velocity of an object.

[tex]p=m\times v[/tex]

or,

[tex]\Delta p=m\times \Delta v[/tex]      .......(2)

Equating 1 and 2, we get:

[tex]\Delta x\times m\times \Delta v=\frac{h}{4\pi}[/tex]

[tex]\Delta v=\frac{h}{4\pi \Delta x\times m}[/tex]

(a) Given:

m = mass of electron = [tex]9.11\times 10^{-31}kg[/tex]

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\Delta x[/tex] = [tex]13\AA=13\times 10^{-10}m[/tex]

conversion used : [tex](1\AA=10^{-10}m)[/tex]

Now put all the given values in the above formula, we get:

[tex]\Delta v=\frac{6.626\times 10^{-34}Js}{4\times 3.14\times (13\times 10^{-10}m)\times (9.1\times 10^{-31}kg)}[/tex]

[tex]\Delta v=4.5\times 10^{4}m/s[/tex]

The minimum uncertainty in an electron's velocity is, [tex]4.5\times 10^{4}m/s[/tex]

(b) Given:

m = mass of helium atom = [tex]6.646\times 10^{-27}kg[/tex]

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\Delta x[/tex] = [tex]1.0\AA=1.0\times 10^{-10}m[/tex]

conversion used : [tex](1\AA=10^{-10}m)[/tex]

Now put all the given values in the above formula, we get:

[tex]\Delta v=\frac{6.626\times 10^{-34}Js}{4\times 3.14\times (1.0\times 10^{-10}m)\times (6.646\times 10^{-27}kg)}[/tex]

[tex]\Delta v=7.9\times 10^{1}m/s[/tex]

The minimum uncertainty in a helium atom's velocity is, [tex]7.9\times 10^{1}m/s[/tex]

a) Minimum uncertainty in an electron's velocity is [tex]\rm 4.5\times 10^4 \;m/sec[/tex].

b) minimum uncertainty in a helium atom's velocity is 79 m/sec.

Solution :

a) Given :

[tex]\rm \Delta x = 13\; \AA = 13\times 10^-^1^0\;m[/tex]

Planck's Constant, [tex]\rm h = 6.626\times 10 ^-^3^4\; J.sec[/tex]

Mass of electron, [tex]\rm m_e = 9.11\times 10^-^3^1\;Kg[/tex]

Solution :

We know that mopmentum is,

[tex]\rm \Delta p = m \times \Delta v[/tex]  --- (1)

Now according to Heisenberg's uncertainty principle,

[tex]\rm \Delta x \times \Delta p = \dfrac{h}{4\pi}[/tex]   ---- (2)

So from equation (1) and (2) we get ,

[tex]\rm \Delta x \times \Delta v \times m = \dfrac{h}{2\pi}[/tex]  ------ (3)

Now put the values of [tex]\rm m_e[/tex], h and [tex]\rm \Delta x[/tex] in equation (3) we get,

[tex]\rm \Delta v = \dfrac{6.626\times10^-^3^4}{4\pi\times 13\times 10^-^1^0\times 9.1 \times 10^-^3^1}[/tex]

[tex]\rm \Delta v = 4.5\times 10^4\;m/sec[/tex]

Therefore, minimum uncertainty in an electron's velocity is [tex]\rm 4.5\times 10^4 \;m/sec[/tex].

b) Given :

Mass of helium atom, [tex]\rm m_h_e = 6.646\times 10^-^2^7\; Kg[/tex]

[tex]\rm \Delta x = 1\AA= 10^-^1^0\;m[/tex]

Now again put the values of [tex]\rm m_h_e[/tex], h and [tex]\rm \Delta x[/tex] in equation (3) we get,

[tex]\rm \Delta v = \dfrac{6.626\times10^-^3^4}{4\pi\times 10^-^1^0\times 6.646 \times 10^-^2^7}[/tex]

[tex]\rm \Delta v = 79\;m/sec[/tex]

Therefore, minimum uncertainty in a helium atom's velocity is 79 m/sec.

For more information, refer the link given below

https://brainly.com/question/24508217?referrer=searchResults