The work function of an element is the energy required to remove an electron from the surface of the solid. The work function for rhodium is 480.5 kJ/mol (that is, it takes 480.5 kJ of energy to remove 1 mole of electrons from 1 mole of Rh atoms on the surface of Rh metal). What is the maximum wavelength of light that can remove an electron from an atom in rhodium metal?

Respuesta :

Answer:

[tex]\lambda=249.2\ nm[/tex]

Explanation:

Given that:

The work function of the rhodium = 480.5 kJ/mol

It means that

1 mole of electrons can be removed by applying of 480.5 kJ of energy.

Also,

1 mole = [tex]6.023\times 10^{23}\ electrons[/tex]

So,

[tex]6.023\times 10^{23}[/tex] electrons can be removed by applying of 480.5 kJ of energy.

1 electron can be removed by applying of [tex]\frac {480.5}{6.023\times 10^{23}}\ kJ[/tex] of energy.

Energy required = [tex]79.78\times 10^{-23}\ kJ[/tex]

Also,

1 kJ = 1000 J

So,

Energy required = [tex]79.78\times 10^{-20}\ J[/tex]

Also, [tex]E=\frac {h\times c}{\lambda}[/tex]

Where,  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

So,

[tex]79.78\times 10^{-20}=\frac {6.626\times 10^{-34}\times 3\times 10^8}{\lambda}[/tex]

[tex]\lambda=\frac{6.626\times 10^{-34}\times 3\times 10^8}{79.78\times 10^{-20}}[/tex]

[tex]\lambda=\frac{10^{-26}\times \:19.878}{10^{-20}\times \:79.78}[/tex]

[tex]\lambda=\frac{19.878}{10^6\times \:79.78}[/tex]

[tex]\lambda=2.4916\times 10^{-7}\ m[/tex]

Also,

1 m = 10⁻⁹ nm

So,

[tex]\lambda=249.2\ nm[/tex]