Respuesta :
Answer:
Part a)
[tex]T = 0.81 s[/tex]
Part b)
[tex]v_x = 3.33 m/s[/tex]
Part c)
[tex]v_y = 3.91 m/s[/tex]
Part d)
[tex]\theta = 49.55 degree[/tex]
Part e)
[tex]T = 1.11 s[/tex]
Explanation:
Part a)
initial vertical position = 1.02 m
maximum height = 1.80 m
[tex]\Delta y = 1.80 - 1.02[/tex]
[tex]\Delta y = 0.78 m[/tex]
[tex]v_f^2 - v_y^2 = 2a \Delta y[/tex]
[tex]0 - v_y^2 = 2(-9.81)(0.78)[/tex]
[tex]v_y = 3.91 m/s[/tex]
time taken by it to reach this height
[tex]v_y = v_i + at[/tex]
[tex]0 = 3.91 - 9.81 t_1[/tex]
[tex]t_1 = 0.39 s[/tex]
Now when it again touch the ground then its speed is given as
[tex]v_f^2 - v_y^2 = 2a \Delta y[/tex]
[tex]v_f^2 - 0 = 2(9.81)(1.80 - 0.95)[/tex]
[tex]v_y = 4.08 m/s[/tex]
time taken by it to reach this height
[tex]4.08 = v_i + at[/tex]
[tex]4.08 = 0 + 9.81 t_2[/tex]
[tex]t_2 = 0.42 s[/tex]
[tex]T = t_1 + t_2[/tex]
[tex]T = 0.81 s[/tex]
Part b)
Horizontal velocity
[tex]v_x = \frac{x}{t}[/tex]
[tex]v_x = \frac{2.70}{0.81}[/tex]
[tex]v_x = 3.33 m/s[/tex]
Part c)
vertical velocity is the intial y direction velocity
[tex]v_y = 3.91 m/s[/tex]
Part d)
Take off angle is given as
[tex]tan\theta = \frac{3.91}{3.33}[/tex]
[tex]\theta = 49.55 degree[/tex]
Part e)
initial vertical position = 1.20 m
maximum height = 2.50 m
[tex]\Delta y = 2.50 - 1.20[/tex]
[tex]\Delta y = 1.30 m[/tex]
[tex]v_f^2 - v_y^2 = 2a \Delta y[/tex]
[tex]0 - v_y^2 = 2(-9.81)(1.30)[/tex]
[tex]v_y = 5.05 m/s[/tex]
time taken by it to reach this height
[tex]v_y = v_i + at[/tex]
[tex]0 = 5.05 - 9.81 t_1[/tex]
[tex]t_1 = 0.51 s[/tex]
Now when it again touch the ground then its speed is given as
[tex]v_f^2 - v_y^2 = 2a \Delta y[/tex]
[tex]v_f^2 - 0 = 2(9.81)(2.50 - 0.72)[/tex]
[tex]v_y = 5.9 m/s[/tex]
time taken by it to reach this height
[tex]5.9 = v_i + at[/tex]
[tex]5.9 = 0 + 9.81 t_2[/tex]
[tex]t_2 = 0.60 s[/tex]
[tex]T = t_1 + t_2[/tex]
[tex]T = 1.11 s[/tex]