Respuesta :
Option (B)
Answer:
The solution of [tex]\frac{\left(8^{6}\right)\left(8^{-3}\right)\left(4^{-2}\right)}{2} \text { is } 16[/tex]
Solution:
Given that
[tex]\frac{8^{6} \times 8^{-3} \times 4^{-2}}{2}[/tex]
Rewrite the above expression
[tex]=\frac{\left(2^{3}\right)^{6} \times\left(2^{3}\right)^{-3} \times\left(2^{2}\right)^{-2}}{2}[/tex]
On applying the law of exponent [tex]\left(a^{m}\right)^{n}=a^{m n}[/tex]
[tex]=\frac{2^{18} \times 2^{-9} \times 2^{-4}}{2}[/tex]
Rewrite the above expression
[tex]=2^{18} \times 2^{-9} \times 2^{-4} \times 2^{-1}[/tex]
Again applying the law of exponent [tex]a^{m} \times a^{n}=a^{m+n}[/tex]
[tex]=2^{18-9-4-1}[/tex]
[tex]=2^{4}[/tex]
=16
Value of [tex]\frac{8^{6} \times 8^{-3} \times 4^{-2}}{2} is 16[/tex]
Hence option (B) is correct.